Pleiotropic regulatory genes bldA, adpA and absB are implicated in production of phosphoglycolipid antibiotic moenomycin

نویسندگان

  • Roman Makitrynskyy
  • Bohdan Ostash
  • Olga Tsypik
  • Yuriy Rebets
  • Emma Doud
  • Timothy Meredith
  • Andriy Luzhetskyy
  • Andreas Bechthold
  • Suzanne Walker
  • Victor Fedorenko
چکیده

Unlike the majority of actinomycete secondary metabolic pathways, the biosynthesis of peptidoglycan glycosyltransferase inhibitor moenomycin in Streptomyces ghanaensis does not involve any cluster-situated regulators (CSRs). This raises questions about the regulatory signals that initiate and sustain moenomycin production. We now show that three pleiotropic regulatory genes for Streptomyces morphogenesis and antibiotic production-bldA, adpA and absB-exert multi-layered control over moenomycin biosynthesis in native and heterologous producers. The bldA gene for tRNA(Leu)UAA is required for the translation of rare UUA codons within two key moenomycin biosynthetic genes (moe), moeO5 and moeE5. It also indirectly influences moenomycin production by controlling the translation of the UUA-containing adpA and, probably, other as-yet-unknown repressor gene(s). AdpA binds key moe promoters and activates them. Furthermore, AdpA interacts with the bldA promoter, thus impacting translation of bldA-dependent mRNAs-that of adpA and several moe genes. Both adpA expression and moenomycin production are increased in an absB-deficient background, most probably because AbsB normally limits adpA mRNA abundance through ribonucleolytic cleavage. Our work highlights an underappreciated strategy for secondary metabolism regulation, in which the interaction between structural genes and pleiotropic regulators is not mediated by CSRs. This strategy might be relevant for a growing number of CSR-free gene clusters unearthed during actinomycete genome mining.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of morphological differentiation in S. coelicolor by RNase III (AbsB) cleavage of mRNA encoding the AdpA transcription factor

RNase III family enzymes, which are perhaps the most widely conserved of all ribonucleases, are known primarily for their role in the processing and maturation of small RNAs. The RNase III gene of Streptomyces coelicolor, which was discovered initially as a global regulator of antibiotic production in this developmentally complex bacterial species and named absB (antibiotic biosynthesis gene B)...

متن کامل

Changes in the extracellular proteome caused by the absence of the bldA gene product, a developmentally significant tRNA, reveal a new target for the pleiotropic regulator AdpA in Streptomyces coelicolor.

The extracellular proteome of Streptomyces coelicolor grown in a liquid medium was analyzed by using two-dimensional gel electrophoresis and matrix-assisted laser desorption ionization-time of flight peptide mass fingerprint analysis. Culture supernatants became protein rich only after rapid growth had been completed, supporting the idea that protein secretion is largely a stationary phase phen...

متن کامل

Genetic analysis of absB, a Streptomyces coelicolor locus involved in global antibiotic regulation.

The filamentous soil bacterium Streptomyces coelicolor is known to produce four antibiotics which are genetically and structurally distinct. An extensive search for antibiotic regulatory mutants led to the discovery of absB mutants, which are antibiotic deficient but sporulation proficient. Genetic analysis of the absB mutants has resulted in definition of the absB locus at 5 o'clock on the gen...

متن کامل

Aptamers that recognize the lipid moiety of the antibiotic moenomycin A.

Moenomycin A is an amphiphilic phosphoglycolipid antibiotic that interferes with the transglycosylation step in peptidoglycan biosynthesis. The antibiotic consists of a branched pentasaccharide moiety, connected to the moenocinol lipid via a glycerophosphate linker. We have previously described the selection of aptamers that require the lipid group and the disaccharide epitopes of the oligosacc...

متن کامل

Transcriptional regulation of Streptomyces coelicolor pathway-specific antibiotic regulators by the absA and absB loci.

The four antibiotics produced by Streptomyces coelicolor are all affected by mutations in the absA and absB loci. The absA locus encodes a putative two-component signal transduction system, and the absB locus encodes a homolog of Escherichia coli RNase III. We assessed whether these loci control synthesis of the antibiotics actinorhodin and undecylprodigiosin by regulating transcript abundance ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2013